Alaska Climate Change Strategy ## Catalog of Mitigation Options Oil and Gas Technical Working Group #### Catalog as of July 31, 2008, with feedback from July 15, 2008 MAG meeting Some TWG members provided revisions to this document after it had been posted to the MAG website on July 10, 2008. This document contains the revisions marked in italics. Some reorganization of options has happened as a result of the revisions. Feedback from July 15, 2008 MAG meeting is noted in yellow highlights Brief descriptions of these options, and some of the related state actions underway, are available in a companion document. ### Key to Preliminary Rankings of Options in the Tables that Follow: | Key to Freminiary Rankings of Options in the Tables that Follow: | | | | | | | | |--|--|--|--|--|--|--|--| | Potential GHG Emission Reductions ^{1/} | Potential Cost or Cost Savings 11/21 | | | | | | | | High (H): At least 1.0 million metric tons (MMt) carbon dioxide equivalent (CO ₂ e) per year by 2020 (~2% of current AK emissions) | High (H) : \$50 per metric ton CO ₂ e (MtCO ₂ e) or above | | | | | | | | Medium (M): From 0.1 to 1.0 MMtCO ₂ e per year by 2020 | Medium (M): \$5-50/MtCO ₂ e | | | | | | | | Low (L): Less than 0.1 MMtCO ₂ e per year by 2020 | Low (L): Less than \$5/MtCO ₂ e | | | | | | | | Uncertain (U): Not able to estimate at this time | Negative (Neg): Net cost savings | | | | | | | | Uncertain (U): Not able to estimate at this time | | | | | | | | | 1/ Several options may overlap in terms of emissions reductions and/or cost impacts. Estimates assume options would be implemented independently from other options. | | | | | | | | | 2/ Costs are denoted by a positive number. Cost savings (i.e., "negative costs") are denoted by a negative number. | | | | | | | | #### Definition of "Priorities for Analysis" [these will be assigned by the MAG/TWG as part of this process]: - **High:** High priority options will be analyzed first. - **Medium:** Medium priority options will be analyzed next, time and resources permitting. - Low: Low priority options will be analyzed last, time and resources permitting. | Option
No. | • | Potential
GHG
Emissions
Reduction | Cost per
Ton | Other Considerations: Jobs and Economy, Externalities, Feasibility, Interactions with Federal GHG programs | Priority for
Analysis | Notes /
Related Actions in Alaska
Proposed actions at Federal level | |---------------|---|--|-----------------|--|--------------------------|---| | OG-1 | OVERARCHING POLICIE | ES | | | | | | 1.1 | Ensure Growth of Alaska's
Jobs and Economy | | | | | MAG feedback is that this should be addressed as criteria across all options rather than as a separate option, see revisions to "Other Considerations" column heading | | 1.2 | Avoid Redundancy and
Conflicting of Federal
GHG Program with other
programs. | | | | | MAG feedback is that this should be addressed as criteria across all options rather than as a separate option, see revisions to "Other Considerations" column heading | | 1.3 | Incentives to Reduce the GHG-intensity of Fossil Fuel Production | | | | | | | 1.4 | Reduce Energy Demand
for Fossil Fuels in
Residential, Commercial,
Industrial (non-oil and
gas), Electric, and
Transportation Sectors | | | | | This option will likely also be considered in Energy Supply/Energy Demand TWG and in the Transportation and Land-Use TWG. Oil and Gas TWG want to ensure this option is considered and share any information with other TWGs. | | 1.5 | Gap Analysis of Research
and Development (R&D)
Opportunities, including
R&D for low-GHG Fossil
Fuel Technologies | | | | | | | 1.6 | Evaluate Market-Based | | | | | | | Option
No. | Option Mechanisms to Establish a Price Signal for GHG | Potential
GHG
Emissions
Reduction | Cost per
Ton | Other Considerations: Jobs and Economy, Externalities, Feasibility, Interactions with Federal GHG programs | Priority for
Analysis | Notes /
Related Actions in Alaska
Proposed actions at Federal level | |---------------|--|--|-----------------|--|--------------------------|--| | | Emissions (GHG Cap-
and-Trade or
Tax/Emissions Fee or
Federal Regulations) | | | | | | | OG-2 | PREPARE FOR FEDER. | AL REQUII | REMENTS | FOR GHG | | | | 2.1 | Support Federal GHG
Program | | | | | | | 2.2 | Support for Regional
Tradeoffs Amongst
Carbon and Currently
Regulated Pollutants | | | | | | | | CARBON CAPTURE ANI
INCENTIVES, SUPPORT | | | | | | | 3.1 | Evaluate Incentives,
Economics and Feasibility
of CO ₂ capture in O&G
operations | | | | | Related action: Carbon Capture Project http://www.co2captureproject.org/overvie w/overviewP2.htm, joint project with oil companies and government partners | | 3.2 | Evaluate Incentives,
Economics and Feasibility
of CO ₂ storage or reuse in | | | | | | | Option
No. | GHG Reduction Policy Option O&G operations | Potential
GHG
Emissions
Reduction | Cost per
Ton | Other Considerations: Jobs and Economy, Externalities, Feasibility, Interactions with Federal GHG programs | Priority for
Analysis | Notes /
Related Actions in Alaska
Proposed actions at Federal level | |---------------|--|--|-----------------|--|--------------------------|---| | 3.3 | Evaluate Economics and Feasibility of CO ₂ use for Enhanced Oil Recovery (EOR) or Other Reuse in O&G Operations | | | | | | | 3.4 | Evaluate Economics and Feasibility of CO ₂ capture and storage or reuse (CCSR) in refineries | | | | | | | 3.5 | Support EPA Development of UIC (Underground Injection Control) rules for CO ₂ injection | | | | | | | OG-4 | FUEL PRODUCTION AN | D PROCES | SSING | | | | | 4.1 | Oil and Gas Production:
Incentives, Support, or
Requirements for Energy
Efficiency | | | | | | | 4.2 | Oil and Gas Production:
Energy efficiency
Incentives, Support, or
Requirements for
Reducing Fugitive | | | | | | | Option
No. | GHG Reduction Policy Option Emissions | Potential
GHG
Emissions
Reduction | Cost per
Ton | Other Considerations: Jobs and Economy, Externalities, Feasibility, Interactions with Federal GHG programs | Priority for
Analysis | Notes /
Related Actions in Alaska
Proposed actions at Federal level | |---------------|--|--|-----------------|--|--------------------------|--| | 4.3 | Improve energy efficiency / cogeneration in refineries | | | | | | | 4.4 | Reduce Fugitive
Emissions at Refineries | | | | | | | 4.5 | Evaluate Economics and Feasibility of Low-GHG fuels in refineries | | | | | | | 4.6 | Renewable Energy
Technologies for Oil and
Gas Production | | | | | | | 4.7 | Energy production,
Distribution, and Sharing
Agreements for Upstream
Oil & Gas Facilities | | | | | | | 4.8 | Evaluate Economics and Feasibility of Reducing flaring | | | | | | | 4.9 | Low-GHG Hydrogen production incentives and support | | | | | Some TWG members suggest deleting this option or removing it from the Oil and Gas sector | | OG-5 | FUEL DELIVERY | | | | | | | 5.1 | Natural Gas Transmission | | | | - | | | Option
No. | Option | Potential
GHG
Emissions
Reduction | Cost per
Ton | Other Considerations: Jobs and Economy, Externalities, Feasibility, Interactions with Federal GHG programs | Priority for
Analysis | Notes /
Related Actions in Alaska
Proposed actions at Federal level | |---------------|---|--|-----------------|--|--------------------------|---| | | and Distribution:
Incentives, Support or
Regulations to Reduce
Fugitive Emissions | | | | | | | 5.2 | Natural Gas
Transmission: Incentives,
Support or Regulations to
Improve Efficiency | | | | | | | 5.3 | Improve efficiency of oil transmission and distribution systems | | | | | | | 5.4 | Reduce Fugitive
Emissions from Oil
transmission and
distribution systems | | | | | | | 5.5 | Improve Energy Efficiency in Gas Distribution Systems | | | | | |